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ABSTRACT 

Geothermal wells can be stimulated to increase 

productivity or injectivity by drilling multiple, small-

diameter laterals using a technique called Radial Jet 

Drilling (RJD). Laterals can be freely placed along a 

backbone well, making an optimal distribution of 

laterals over the backbone or well design time 

intensive. Therefore numerical optimization will be 

applied for the design. Because of the discrete nature of 

the optimization problem, the gradient-free CMA-ES 

algorithm is chosen for the optimisation. Also an 

uncertainty-handling CMA-ES is incorporated in the 

workflow, because the jetting process us not steered 

and thus the lateral path is uncertain. Two case studies 

are evaluated for optimization using these algorithms. 

The first is a reservoir with two high permeability 

layers with a vertical well. The second case is a vertical 

well in a fine-layered reservoir. For both cases, the 

number and depth of the laterals is optimized. The 

workflow is able to determine well plans with higher 

NPV in each of these cases, although finding a global 

optimum remains difficult. 

1. INTRODUCTION 

Geothermal wells can be stimulated to increase 

productivity or injectivity by drilling multiple, small-

diameter laterals using a technique called Radial Jet 

Drilling (RJD). In this technique, multiple laterals with 

lengths up to 100 m and a diameter of 25 to 50 mm are 

created using hydraulic jetting (see e.g. Kamel, 2017, 

Yan et al, 2018). A common design is, for example, to 

jet 8 to 16 laterals in a single well in groups of 4 with a 

spacing between laterals at a single kickoff point of 90° 

(Figure 1). The kickoff points can in principle be 

positioned anywhere along the length of the backbone. 

Their positioning can therefore be chosen to achieve an 

optimal productivity or injectivity for the well as a 

whole, or for the performance of a geothermal doublet. 

In the presence of geological heterogeneity, the effect 

of alternative placings may be difficult to predict 

without the use of a numerical simulation model. If 

such a model is available, alternative placings can be 

tested and compared. In fact the entire design of each 

well can be evaluated and optimized by means of 

numerical optimization methods. The use of model-

based optimization for field and well design has been 

extensively studied in the petroleum industry. Recent 

developments include the optimization of the 

trajectories of a fixed set of wells that are to be drilled 

from a single offshore platform (see, e.g. Barros et al., 

2018). Here we are interested in investigating the 

possibility to find an optimal design for the RJD 

stimulation of a geothermal well or doublet, where the 

design is defined by the placement along given 

backbones of an unknown number of radials that are 

associated with some number of kickoff points. The 

optimality of the design will typically be determined by 

the difference between additional costs to drill radials 

and the extra revenues that are incurred as a result of 

the improved economic performance of the improved 

design.  

The design parameters of the sketched optimization 

problem include both integers (number of laterals per 

kickoff, number of kickoffs) and real numbers (spacing 

between kickoffs and between laterals within a single 

kick off). The presence of integer design parameters 

makes the problem unsuited for solution with gradient-

based methods. Here we will therefore use the 

Covariance Matrix Adaptation Evolutionary Strategy 

(CMA-ES) method from the family of  population-

based optimization methods. 

 

Figure 1: Conceptual illustration of a single vertical 

backbone and two kick-offs with four radials each 

spaced at 90o.  

 

Since the laterals are not steered but rely on the stiffness 

of the jetting hose to keep a straight path, the actual 

achieved path of the laterals is uncertain. This 
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uncertainty should ideally be accounted for when the 

optimality of a particular design is evaluated. We would 

like to identify designs that are somewhat robust to 

deviations from the planned trajectories of the laterals. 

We will therefore investigate the use of an uncertainty-

handling version of CMA-ES. 

In the remainder of this paper we will define the 

objective function that we wish to maximize, describe 

the design parameters, introduce the simulation and 

optimization methodology, and show results of the 

application of the optimization workflow to two 

example cases of increasing complexity. The second 

case study is based on an existing geothermal field. 

 

2. METHODS 

2.1 Radial jetted well simulation 

In order to evaluate different RJD designs, we need to 

be able to simulate the impact of a particular design on 

the flow dynamics. The inflow or outflow of each radial 

into the reservoir 𝑞𝑖 is determined by the connectivity 

𝑊𝐼𝑖  between the pressure in the radial 𝑝𝑤,𝑖 and the 

pressure in the grid block 𝑝𝑏,𝑖 in which the radial is 

located:   

                          𝑞
𝑖

=
𝑊𝐼𝑖

𝜇
(𝑝

𝑏,𝑖
− 𝑝

𝑤,𝑖
)                                 [1] 

where 𝜇 is the viscosity of fluid. The connectivity or 

Well Index 𝑊𝐼𝑖 is computed individually for all 

intersections of the radial trajectory with the 

intersecting grid cells using the projection method or 

three-part Peaceman formula (Peters et al., 2018b). In 

this method the intersection of a well with a grid cell is 

projected on a local coordinate system. For each of the 

three projected parts, the WI is calculated which is 

subsequently combined into a single 𝑊𝐼𝑖.   

This calculation has been incorporated in a stand-alone 

tool based on the open source code FieldOpt  (NTNU, 

2018). In collaboration with NTNU, this code has been 

extended further to allow for well index calculation for 

multilateral wells. 

The accuracy of this calculation is very important for 

the optimization. If the accuracy is insufficient, 

numerical errors may be larger than the differences 

resulting from different parameter sets. The accuracy of 

the projection approach was tested by comparison with 

the results of other simulators (Peters et al., 2018a). In 

addition, Troost (2019) evaluated the accuracy of the 

simulation, in particular the effect of changing azimuth 

of radials. Both studies concluded that for sufficiently 

fine grid (< 10 m), the error is in the order of a few 

percent, which is probably sufficiently small for the 

optimization. The calculated well indices are input for 

a reservoir flow simulation. All flow simulations  were 

performed with the open-source simulator Flow that 

has been developed as part of the Open Porous Media 

(OPM) initiative (opm-project.org). 

2.2 Definition of the optimization problem 

In order to evaluate and compare alternative designs a 

performance measure needs to be determined. Here we 

will adopt an economic performance measure that 

includes the costs of drilling additional radials and the 

revenues associated with increased heat recovery. We 

define Net Present Value (NPV) of the project as 

𝑁𝑃𝑉 =  ∑
𝑃(𝑡)

(1+𝑟)𝑡
𝑛
𝑡=0             [2] 

where 𝑃(𝑡) is the total of costs and revenues incurred at 

time 𝑡. The discount rate r is taken as zero in this 

application. Costs for radials are based on the time it 

takes to drill them multiplied by a day rate. Assuming 

a day rate of €60,000 and a drilling efficiency of 2.2. 

radials per day, the capital expense amounts to €27000 

per radial. Revenues are proportional to the amount of 

heat 𝑄 produced by the laterals with 𝑄 = 𝑚 ∙ 𝑐𝑝 ∙ ∆𝑇 

where 𝑚 is the mass of produced water by the laterals, 

𝑐𝑝 is the heat capacity of water, and ∆𝑇 is the difference 

in temperature between produced water (assumed 

constant at 80oC) and re-injected water (assumed to be 

20oC). The wells are operated at fixed pressure which 

means that the pump fuel usage depends on the flow 

rate only. The produced heat is translated to a monetary 

benefit via the price of heat (0.02 euro/kWh, ‘SDE+ 

Basisbedrag’ Lensink et al., 2018).  No starting cost for 

the RJD job is taken into account. The costs of drilling 

the backbone and well operation costs do not need to be 

considered because only the incremental cost and 

benefit of the radials are included in the analysis. It 

should be noted that both cost and benefit contributions 

to the NPV are simplified and that the calculated NPV 

of the two case studies discussed are thus not fully 

representative of a real NPV for a radial jetting case. 

We will now discuss the design parameters that will act 

as the decision variables in the optimization problem. 

A single, straight lateral can be characterised by the 

following set of parameters: kickoff depth, length, 

diameter, azimuth and inclination. These parameters 

However, to simplify the optimization, the laterals are 

all assumed to be 100 m long and have a fixed diameter 

of 0.05 m. Moreover, azimuth and inclination cannot be 

fully controlled and are not included in the 

optimization. Finally, the laterals are grouped in kick-

offs. The following design parameters are therefore 

used per kickoff: depth (normalized from 0 to 1) and 

number of laterals. 

 

2.3 Solution approach: CMA-ES 

We aim to find the drilling design that maximizes the 

performance measure (NPV). The design is 

characterized here by a set of parameters. CMA-ES 

(Hansen and Ostermeier,1996) is a population-based 

optimization strategy that evaluates a set of perturbed 

parameters sampled from an initial distribution, ranks 

them according to the performance measure, updates 

the distribution, and samples a new set of parameters 

from the updated distribution. This process is repeated 

until convergence when the performance of the 

distribution mean does not improve any more. The 
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updates of the distribution involve separate updates of 

the mean 𝑚 and of the covariance matrix 𝐶. The update 

equations are 

                       𝑚𝑘+1 =  ∑ 𝑤𝑖
𝜇
𝑖=1 𝑥𝑖:𝜆

𝑘+1                              [3] 

where 𝑚𝑘+1 is the mean parameter vector at iteration 

𝑘 + 1, based on weighting by weights 𝑤𝑖  of the best 𝜇 

members of the population that consists in total of 𝜆 

members 𝑥𝑖, 

𝑝𝑘+1 = (1 − 𝑐𝑐)𝑝𝑘 + √𝑐𝑐(2 − 𝑐𝑐)𝜇𝑒𝑓𝑓
𝑚𝑘+1−𝑚𝑘

𝜎𝑘       [4] 

where 𝑝𝑘 is the so-called evolution path vector, and all 

other variables are tuning parameters, and 

𝐶𝑘+1 = (1 − 𝑐1)𝐶𝑘 + 𝑐2𝑝𝑘+1𝑝𝑘+1𝑇
+

                                            𝑐3 ∑ 𝑤𝑖
𝜇
𝑖=1 𝑦𝑖:𝜆

𝑘+1𝑦𝑖:𝜆
𝑘+1𝑇

          [5] 

where 𝑦𝑖:𝜆
𝑘+1 is a normalized member of the population 

at iteration 𝑘. The second and third terms in Eq. [5]  are 

referred to as the rank-one and rank-𝜇 updates 

respectively. Once a new mean and covariance matrix 

are determined, new samples can be generated from the 

resulting Gaussian distribution as characterized by the 

new mean and covariance matrix. Default values exist 

for all tuning parameters of the CMA-ES algorithm. We 

have adopted the values proposed by Hansen (2006). 

In this work we apply one variation of the generic 

CMA-ES algorithm. We introduce some modifications 

that allow us to handle uncertainty (Hansen et al., 2009) 

based on re-evaluation of selected population members 

after perturbation in accordance with the prescribed 

uncertainty. For more details the reader can consult the 

referenced publications. 

2.4 Workflow overview 

The final workflow has the following steps: 

1. Initial radial parameters 𝑥𝑘 are specified as input 

2. Perturbed parameters are sampled for 𝜆 members 

using the initial covariance matrix (eq. [5]). 

3. For 𝜆 members, all 𝑊𝐼𝑖 values (eq. [1]) are 

calculated for the radial design characterised by the 

perturbed parameters.  

4. For 𝜆 members, the reservoir simulation is 

performed using the 𝑊𝐼𝑖 values from step 3 

resulting in the produced heat. 

5. For 𝜆  members, NPV is calculated (eq. [2]). 

6. The members are ranked according to the NPV. 

7. Adapt mean parameter vector, covariance matrix 

and step size (eq. [3] – [5]) based on the best 𝜇 

members. 

8. Repeat from step 2, with the updated mean 

parameter vector instead of the initial parameters 

and the updated covariance matrix and step size. 

For all experiments, 20 iterations were done in order to 

compare the performance.  

 

3. EXPERIMENTS AND RESULTS 

3.1 Case study overview 

As a first step the workflow is tested on a relatively 

simple model of a single well in a reservoir with two 

high permeability layers, referred to as the ‘2-layer 

model’. The goal is to test the workflow. The second 

test case is also a single well model but now with thinly 

layered deposits. This model is based on the Klaipeda 

geothermal site (Nair et al., 2017). In the following the 

cases are described in more detail. 

 

The 2-layer model has two high-permeable layers 

bounded on both sides by low-permeable rock (Figure 

2). Details of the model are provided in Table 1. The 

vertical layering is chosen identical to the layering for 

the fine-layered model (Figure 3) which has more 

variation between thin zones with relatively low and 

high permeability.  

 

 

Figure 2: Cross-section of the 2-Layer model 

showing normalized depth and horizontal 

permeability kh. 

 

Table 1: Input for the 2-layer model 

Grid 

Grid Cells (Ni x Nj x Nk) 100 x 100 x 59 
dx x dy 10 m x 10 m 
Depth interval  970 to 1125 m TVDSS 

Rock properties (fine grid) 

kh (high, low) 500 mD, 20 mD,  
kv  kh / 5 
Porosity  0.1 
Net/Gross 1 
Rock compressibility 0.00015 bar-1 

Initial Reservoir Conditions 

Pressure 107.2 bar @ -1047.5 m 

Water Properties 

Density @ ref. conditions 1047 kg/m3 

Viscosity  0.88 mPa·s 

Formation Volume Factor 1.0004 rm3/sm3 

Compressibility 0.000037 bar-1 

 

The fine-layered model is based on the geothermal 

reservoir at the Klaipėda geothermal site (Šliaupa, 

2016; Brehme et al., 2017). The reservoir is composed 

of a fine-grained friable sandstone (fine and medium 

grained) from the Lower Devonian called the Kemeri 

Formation. 
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The reservoir has relatively thin layers with high 

permeability between thicker layers of fine grained 

material with lower permeability. The reservoir is 

developed with two injectors and two producers. Here 

only injector well 1I is used. Vertical layering is based 

on the facies distribution. The higher permeable layers 

have more detailed layering than the low permeable 

layers. Although the facies distribution is based on the 

logs from the well 1I, the permeability values have been 

chosen to make a suitable optimization case study 

Details of this model are provided in Table 2. 

 

In both models we apply a constant pressure on the 

laterals boundary conditions and no-flow boundary 

conditions at the top and bottom of the model. In both 

cases a single producing well is positioned in the centre 

of the modelled domain. 

 

 

Table 2: Input for the fine-layered model 

Grid 

Grid Cells (Ni x Nj x Nk) 100 x 100 x 59 
dx x dy 10 m x 10 m 
Depth interval  970 to 1125 m TVDSS 

Rock properties (fine grid) 

kh (Coarse sand, fine sand, 

clay) 
500 mD, 250 mD, 50 

mD 
kv (Coarse sand, fine sand, 

clay) 
150 mD, 150 mD, 50 

mD 
Porosity (Coarse sand, fine 

sand, clay) 
0.21, 0.14, 0.07 

Rock compressibility 0.00015 bar-1 
Net/Gross 1 

Initial Reservoir Conditions 

Pressure 120 bar @ -1047.5 m 

Water Properties 

Density @ ref. conditions 1060 kg/m3 

Viscosity  0.88 mPa·s 

Formation Volume Factor 1.0002 rm3/sm3 

Compressibility 0.000036 bar-1 

 

Figure 3: Geometry and facies distribution in the fine layered model 

 

3.2 Results 

Figure 4 shows the development of the performance 

measure or objective function (NPV) for the 2-layer 

case over 20 iterations for three different initial settings 

(see Table 3). Depth is scaled/normalized from 0 to 1 

representing top and bottom of the reservoir 

respectively. The objective function value corresponds 

to the function evaluation of the mean control vector of 

the best 𝜇  members of the population. The depth of the 

kick-offs and the number of radials per kick-off were 

optimised. The number of kick-offs was fixed at 2. For 

all three cases, the NPV increases, although not to the 

same level (Figure 4). In this simple case, we can easily 

deduce what the optimal configuration is, namely one  

 

kick-off in the top high-permeability layer and one in 

the bottom high permeability layer. This is indeed the 

configuration found in two of the runs (Figure 5). 

However, in run 2, which has lower NPV, the two kick-

offs have been placed in one of the two high-perm 

layers. Interference between the radials thus reduces the 

realized flow. Run 1 starts with a reasonably good 

initial guess and a smaller standard deviation for the 

initial sampling  of perturbed kick-offs. Run 3 starts 

with a poorer initial guess, but larger standard 

deviation. The NPV for run 3 is the highest: in this run, 

the number of laterals is increased compared to run 1. 

The optimized kick-off depths are very similar for the 

two runs. 
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Table 3: Initial setting for the optimization of the 2-

layer model: normalized kick-off depth and 

standard deviation σ of the kick-off depth.  

Run 
Kick-off 

depth 1 

Kick-off 

depth 2 

σ kick-off 

depth 

1 0.3 0.6 0.2 

2 0.5 0.9 0.2 

3 0.5 0.9 0.3 

 

In Figure 6 the NPVs of all population members which 

were simulated during the optimization process from 

run 3 are plotted as a function of the normalized kick-

off depths. Despite the fact that also the number of 

laterals varies, the figure shows clearly at which depths 

the best performance is achieved. It also shows that part 

of the parameter space is not sampled, because the 

solution quickly converged towards the optimal values. 

For the other two runs, the distribution of the samples 

also didn’t cover the entire parameter space. We have 

not attempted here to find the best tuning parameters 

for CMA-ES (e.g. the initial variances) that minimize 

simulation cost.  

 

 
Figure 4: Development of NPV for the 2-Layer case 

during optimization of kick-off depth and 

number of radials. 

 

Figure 5: Development of kick-off depth in the 

accepted control vector (normalized between 

0 and 1) for the 2-layer case during 

optimization. 

 

 
Figure 6: NPV as a function of normalized kick-off 

depth for the 2-Layer model with two kick-

off points for all optimization runs. 

 

The second model that was tested, the fine layered 

model, is a more challenging optimization problem, 

since there are multiple high permeability layers, as 

well as layers with intermediate permeability (see 

Figure 3). As in the 2-Layer case, the kick-off depth and 

the number of radials were optimized. Two 

optimization runs were done: one starting with two 

kick-off points and one with four kick-off points. The 

development of the objective function in Figure 7 

shows that the convergence for the case with 2 kick-

offs is faster, but the final NPV for 4 kick-offs is higher. 

Figures 8 and 9 show the evolution of the kick-off depth 

for the case with two kick-offs and the case with four 

kick-offs respectively. The depth value that is plotted is 

the mean kick-off depth of the µ best performing 

ensemble members. This is the also the depth used for 

the calculation of NPV plotted in Figure 7. In both 

cases, the kick-off points are moved to the coarse sand 

area in the bottom of the model with high permeability, 

except for one kick-off in the case with four kick-offs 

(Figure 9).  

 

 

Figure 7: Development of NPV for the fine layered 

model for optimization with two and four 

kick-off points. 
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The number of radials is also optimized. The initial 

number of radials is four for all kick-offs independent 

or the number of kick-ffs. For the case with two kick-

offs, the optimization results in more radials per kick-

off (5 and 6) than in the case with four kick-offs (4 

radials for most).  

 

Figure 8: Development of the kick-off depths for 

the fine layered model with 2 kick-offs (stars 

indicate the initial values). 

 

Figure 9: Development of the kick-off depth for the 

fine layered model for with 4 kick-offs (stars 

indicate the initial values). 

 

From Figure 8 and Figure 9 it can be seen that the final 

designs are very different from the initial designs and 

that significantly improved designs can be found in a 

fairly limited number of iterations. To analyse whether 

a global optimum has been reached, in particular for the 

kick-off depth, the results of all population members 

were analysed. The best performing member for both 

cases had slightly higher NPV than the optimised mean. 

All NPV values encountered during optimization for 

the two kick-off case are plotted in Figure 10 as a 

function of normalized depth. The figure shows that 

indeed high NPV values are associated with larger 

depths for both kick-offs. From this figure it is clear that 

not the entire parameter space is sampled, similar to the 

2-layer case. For the case with four kick-offs, sampling 

of the parameter space had better coverage, although 

also here, shallow depth values were under-

represented. 

 

Figure 10: NPV as a function of normalized kick-

off depth for the fine layered model for 

optimization with two kick-off points. 

 

3.3 Uncertainty handling 

Up until now, it was assumed that the radials are drilled 

in accordance with the design, i.e. that they have 

exactly the designed inclination and azimuth. Because 

the jetting nozzle cannot be steered, inclination and 

azimuth are highly uncertain in practice. For the fine-

layered model, it is expected that in particular changes 

in inclination have impact on the results (Nair et al., 

2017), because the radials can easily leave the high-

perm layers. Therefore we have tested the optimization 

of the fine-layered model with a version of CMA-ES 

with uncertainty handling. Uncertainty was only 

assumed in the inclination of the radials. The standard 

deviation on the inclination was taken as 0.5π rad. 

 

In Figure 11 the evolution of the objective function is 

plotted for both cases. The achieved NPV is a bit lower 

than for the normal CMA-ES. For the case with two 

kick-offs, the depths of the kick-offs (Figure 12) shows 

that one kick-off ended up in the area with high 

permeability in the lower part of the model and one in 

a zone with fine sands (medium permeability) around 

1000 to 1020 m depth. In the case with four kick-offs 

(Figure 13), all kick-offs end up in the zone with high 

permeability at the bottom with three kick-offs almost 

in top of each other. The total number of radials for 

these three kick-offs together is 16, which means that 

16 radials are almost at the same location. This almost 

certainly leads to interference between the radials, 

which is expected to be a sub-optimal solution. It is 

likely that the interference is less due to the uncertainty 

in the inclination of the radials, which increases the 

spread of the radials. 

 

A more extensive analysis is required to fully 

understand the impact of the uncertainty handling on 

the optimization results. 
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Figure 11: Development of NPV for the fine 

layered model with two kick-offs during 

optimization with uncertainty handling 

(stars indicate the initial values). 

 

 

Figure 12: Development of kick-off depth for the 

fine layered model for optimization with 

uncertainty handling with two kick-offs 

(stars indicate the initial values). 
 

 

Figure 13: Development of kick-off depth for the 

fine layered model for optimization with 

uncertainty handling with four kick-offs 

(stars indicate the initial values). 

 

4. CONCLUSIONS 

In this study we have demonstrated the possibility of 

using numerical simulation models in conjunction with 

optimization algorithms to explore design options for 

stimulation of geothermal assets by radial jetting. The 

simulation model provides a quantitative and verifiable 

framework for evaluating different designs while the 

optimization algorithm enables systematic exploration 

and identification of the best possible design. The 

concept was first tested on a simple test case with a 

known optimal solution. After it was verified that the 

optimization workflow could indeed find the optimal 

solution, it was then applied to a single-well case with 

more realistic complexity in the distribution of rock 

properties. Also in this case, an improved placement of 

kick-offs and number of radials could be found. 

A number of further improvements may be possible. In 

real settings, there will be a significant uncertainty 

associated with the rock properties in-between 2 wells 

of a geothermal doublet. This geological uncertainty 

could be incorporated in the optimization workflow, 

but possibly at a severe increase in computational cost. 

The treatment of uncertainty in the CMA-ES was tested 

here, but needs further analysis. Another variation that 

will be tested in the extension to integer variables 

proposed by Hansen (2011). 

Most importantly, follow-up work will address more 

realistically complex design cases with doublets 

consisting of strongly deviated wells and geological 

heterogeneity. 
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