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ABSTRACT 

In the geothermal energy domain, it is common practice 

to drill a doublet (i.e. an injection and production well 

pair) system for heat production from the subsurface. 

Injector-producer spacing typically varies between 1 to 

2 km. This well spacing distance is usually chosen 

through engineering judgement. The concept of drilling 

doublet systems is a result of exploiting geothermal 

systems locally within a larger geological system. 

Willems (2017), illustrated through engineering 

judgement the need for improved well placement 

strategies. There exists significantly greater scope to 

optimize well placement strategies on a regional (i.e. 

geological system) scale, in view of optimizing the net 

energy gained. 

Model based optimization of well location, trajectory 

and thereby spacing is common practice in the oil and 

gas industry. Additionally, due to the usually large 

uncertainty present in the subsurface it is essential to 

also account for geological uncertainties during 

optimization. In our framework, geological 

uncertainties are accounted for through an ensemble of 

equiprobable geological models. Thus, the goal is to 

find a single solution of well locations, which is optimal 

in terms of an expected objective function value over 

the ensemble of models. In this study we illustrate the 

added value of model based geothermal field 

development optimization at the regional scale in a 

positive trade-off with economic performance of single 

assets.  

1. INTRODUCTION 

In most real-world problems decisions are taken based 

on a model-based representation of the system. These 

models are traditionally used to predict the performance 

of the system. Based on these model predictions 

scenarios decision makers take investment and 

operational decisions. Most models make assumptions 

about the real system for a variety of reasons and many 

systems have inherent uncertainties associated with the 

modeling and physical aspects that describe the system. 

In addition to complex uncertainty these models depend 

on many decision variables. These decision variables, 

also known as controls, can have multiple values 

usually within a specified range. A collection of these 

decision variables is known as an operating strategy. In 

order to maximize the performance of the system using 

a model-based approach a decision maker aims to find 

an optimal operating strategy.  

Finding an operating strategy is not trivial especially an 

operating strategy which comprises of many (100’s-

1000’s) of decision variables (i.e. decisions on well 

location, well trajectory, material choices, ESP power, 

etc.). When uncertainty is accounted for the complexity 

of finding a strategy which is robust and optimal is very 

challenging. In this context, numerical optimization 

provides a viable solution to find robust and optimal 

operating strategies.  

While there exist many optimization methods to find 

these optimal strategies most methods suffer from two 

drawbacks. One, the number of decision variables 

which the methods can handle is limited, usually, less 

than 100. Second, when accounting for uncertainty the 

methods are computationally not feasible even with 

recent advances in modern day computing architecture. 

In this work, a stochastic gradient approach, StoSAG 

(Fonseca et al. 2017), is employed for optimization. 

The main advantages of a stochastic gradient approach 

are its ability to effectively handle a large number of 

decision variables as well as model uncertainty in a 

very computationally efficient framework.  

In the geothermal energy production domain, it is 

common practice to drill a doublet (i.e. a pair of 

injection and production wells) well system to produce 

hot water from the subsurface (Van Wees et al., 2012). 

This doublet pair is usually drilled 1-2 km apart (Lopez 

et al., 2010; Mottaghy et al., 2011). This well spacing 

distance is usually chosen through engineering 

judgement. Willems (2017) illustrated through 

relatively simple engineering analysis the need for 

improved well placement strategies. There potentially 

exists significantly greater scope to optimize well 

placement strategies on a regional (i.e. geological 

system) scale. The trajectory of these geothermal wells 
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is usually vertical and sometimes deviated. To 

maximize the energy production from geothermal 

systems it is imperative that a structured approach to 

life-cycle geothermal field development planning is 

developed. In this work we aim to illustrate the 

increased value achievable when using a model-based 

optimization technique to find optimal well location 

strategies when accounting for geological uncertainties.  

The structure of this paper is as follows: a brief 

overview of the optimization method and the 

methodology to solve the optimization problem are 

provided in Section 2. The aquifer models used in this 

study are described in Section 3. Section 4 presents the 

results and discussions. Finally, we end the paper with 

some concluding remarks.  

2. METHODOLOGY  

Optimization is the process of finding the best possible 

solution for a particular problem. To optimize ( i.e. find 

the best possible solution) any problem there must exist   

variables that can be manipulated/changed in order to 

achieve a better solution. These variables are known as 

‘Controls’. Within the context of geothermal field 

development optimization these ‘Controls’ can be 

defined as, well locations, trajectories, injection rates, 

well types, drilling schedule etc. Having defined the 

controls we aim to optimize, we must define a function 

to be optimized. Such a function is known as an 

‘objective function’ which in the context of geothermal 

field development optimization would be either an 

energy recovery factor or an economic objective.  

An optimization process can either be manual or 

automated. Manual optimization is time consuming and 

prone to human bias and errors. Automated 

optimization on the other hand is quicker and less prone 

to human bias and errors. However the results from 

automated optimization workflows need to be analysed 

through human intervention. In the following section 

we describe a state-of-the-art automated workflow to 

perform optimization under uncertainty using 

computationally efficient techniques.  

2.1. Stochastic Simplex Gradients (StoSAG)  

There are numerous methods for model-based 

optimization. These methods can be classified into two 

general classes, derivative-based and derivative free 

techniques. Derivative/Gradient-based methods have 

been shown to be computationally more efficient than 

derivative free methods. In this work we employ a 

stochastic gradient based technique (StoSAG, (Fonseca 

et al., 2017)) as the optimization method which is 

described below.  

2.1.1. Gradient Estimation Methodology 

This section provides a diagrammatic representation of 

the StoSAG method for a single model realization.  

Imagine a two-control problem as displayed in Figure 

1, where the controls are called u1 and u2. To 

approximate the gradient the following steps are 

undertaken.  

• Chose an initial control strategy, e.g. the point [-

1 0] in Figure 1.  

• Generate a set of normally (Gaussian) 

distributed perturbed controls around the initial 

choice of u1 and u2. See the ‘blue dots’ in Figure 

1.  

• Evaluate the objective function values for each 

of the perturbed controls (blue dots). These are 

represented as the ‘red dots’ in Figure 1.  

• Approximate the gradients by applying a linear 

regression through the red dots (green line in 

Figure 1).   

• Use a simple line-search algorithm to find a new 

set of optimal controls in the direction of the 

gradient direction. This process is repeated till 

convergence (i.e. little/no change in the 

objective function) is observed.  

 

Figure 1: Schematic representation of the stochastic optimization 

technique for a simple two control problem. 

In the case when uncertainty must be accounted for 

through the use of multiple model realizations we 

extend the use of the StoSAG method for such 

scenarios.  

Chen (2008) suggested a computationally efficient 

technique to estimate the “robust ensemble gradient”. 

Chen (2008) based on some assumptions suggested the 

use of one perturbed control sample for each model 

realization. Subsequently, the total number of 

simulations to estimate the “robust ensemble gradient” 

would be equal to the number of model realizations. 

This method is computationally attractive and can be 

applied to large scale optimization problems. Fonseca 

et al. (2017), introduced a theoretically more robust 

version of this formulation, StoSAG, which is used in 

this paper for the optimization.  

2.2. Well Location Control Parameterization 

Well grid block coordinates (i,j)  are used as control 

variables to maximize the objective function by varying 

the well locations. Consequently, for vertical wells, 

which are assumed to be fully penetrating the aquifer 

model, this results in 2×nw controls where nw is the 

number of wells. Thus, in a doublet system the control 

vector consists of four variables. Minimum and 

maximum number of grid blocks at each direction are 

used as the lower and upper bound constraints. Control 

variables and the bound constraints are scaled by the 
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maximum grid block number. Since the control 

parameter space is discrete, the updated control 

variables at each optimization iteration is rounded 

before passing to the simulator.  

2.3. Objective Function 

In this work we use an economic objective function, 

Net Present Value (NPV), which is developed by Van 

Wees et al. (2010). The NPV is discounted and consists 

of revenues generated by heat production and the 

associated costs for water injection as well 

drilling/workover costs. The produced energy at each 

time step, eprod [J/s], is calculated as follows,  

𝑒𝑝𝑟𝑜𝑑,𝑘 = 𝑞𝑖𝜌𝑤𝐶𝑤∆𝑇𝑘,            [1] 

where qk [m3/s] is the production rate and ΔTk [K] is the 

difference between injection and production 

temperature at each time step k. ρw [kg/m3] is the water 

density and Cw [J/kg K] is the specific heat capacity.  

Moreover, the pressure difference between the injector 

and producer, Δpk [Pa], is used to calculate the pump 

energy losses, epump [J/s], at each time step, 

𝑒𝑝𝑢𝑚𝑝,𝑘 =
𝑞𝑖∆𝑝𝑘

𝜀
,             [2]    

where ε [-] is the pump efficiency.  

The net energy production is then calculated by the sum 

of the produced energy and the pump energy losses, 

𝑒𝑛𝑒𝑡,𝑘 = 𝑒𝑝𝑟𝑜𝑑,𝑘 − 𝑒𝑝𝑢𝑚𝑝,𝑘.           [3] 

Finally, the objective function (NPV) is calculated as 

follows, 

𝐽 = ∑ [
(𝑒𝑛𝑒𝑡,𝑘.𝑟ℎ−𝑒𝑝𝑢𝑚𝑝,𝑘.𝑟𝑒−𝐶𝐴𝑃𝐸𝑋−𝑂𝑃𝐸𝑋𝑘)𝛥𝑡𝑘

(1+𝑏)𝑡𝑘
]𝐾

𝑘=1 ,       [4] 

where rh [€/GJ] is the heat price, re [€/GJ] is the 

electricity cost for the operation. b is the discount rate 

and tk is the time. CAPEX consists of costs for drilling, 

pumps and separators, which is invested at year 1. 

Moreover, OPEX is assumed to be 5% of CAPEX a 

year. Table 1 represents the economic parameters for 

the objective function value calculations based on Van 

Wees et al. (2010) and Willems (2017). 

Parameter Value Unit 

Heat price 6 €/GJ 

Electricity price for 

operations 
22.22 €/GJ 

Discount rate 7.5 % 

Drilling cost 1.5 M€/km 

Pump price 0.5 M€ 

Separator price 0.1 M€ 

Table 1: Economic parameters for the NPV calculations based on 

Van Wees et al. (2010) and Willems (2017). 

3. GEOTHERMAL AQUIFER MODELS  

Three different geothermal aquifer models have been 

used in this study. The Open Porous Media (OPM 

Flow) simulator has been used in this study for 

modelling non-isothermal flow through porous media. 

This section provides a description of the different 

models.  

3.1. 2D Homogenous Model 

A simple 2D homogenous with dimension of 5000 m × 

5000 m with a thickness of 100 m has been used. The 

model is discretized in 100 × 100 grid blocks of size 50 

m × 50 m. The aquifer has a constant permeability of 

200 mD and porosity of 0.12. The initial reservoir 

temperature and pressure are assumed to be 65  ̊C and 

50 bar, respectively. The rock and water thermal 

conductivity are 345.6 and 51.84 kJ/m/day/K, 

respectively. The heat capacities for the rock and water 

are 2.7 and 4.2 kJ/kg/K, respectively. The water has a 

density of 1000 kg/m3 and a viscosity of 0.001 Pa s. 

Note, these are the pure water properties at room 

temperature. Heat capacity and density for brine water 

composition would be different however will not 

significantly affect the result  in terms of the proof of 

concept purpose of this study. The aquifer is produced 

with a single doublet with a well radius of 0.1778 m. 

The system (well) inputs are the (constant) water rate 

and water temperature in the injector and the (constant) 

water rate in the producer, which are all assumed to be 

known. Both injector and producer operate at a constant 

rate of 160 m3/h, while the injector has a maximum 

pressure of 75 bar and the producer has a minimum 

pressure of 40 bar. The injection temperature is set to 

35 ̊C. The simulation life time is 100 years. 

3.2. 2D Heterogenous Model  

A channelized reservoir model has been used to study 

the effect of heterogeneity on well location 

optimization in geothermal heat production systems. 

The average permeability of the channels is 350 mD 

while the background shale facies has an average 

permeability of 20 mD and the aquifer has a constant 

porosity of 0.2. Other reservoir and fluid properties are 

the same as those used for the homogenous model. 

Figure 2 illustrates the permeability and channel 

configuration used.  

  

Figure 2: Permeability map of 2D heterogenous model. 

3.3. 3D Regional Model  

The aquifer realizations that have been used in the 

numerical production simulations are representations of 

the main geothermal aquifer target in the West 

Netherlands Basin. This target is part of the Late 
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Jurassic to Early Cretaceous Nieuwerkerk Formation 

(DeVault and Jeremiah, 2002). The aquifer target is 

characterized as a syn-rift, sandstone-rich interval of 

Valanginian age (Willems et al., 2018) within the 

Nieuwerkerk Formation. It was deposited in a in a 

coastal-plain setting. Stacked meandering sandstone-

channel complexes form the aquifer, which are 

surrounded by impermeable floodplain fines. The 

geological modelling is based on a subsurface dataset 

described by Willems et al. (2017) and an outcrop study 

by Donselaar and Overeem (2008). Object-based 

modelling has been used to generate 100 aquifer 

realizations width dimensions of 5km × 5km × 150 m. 

The modeling is based on parameter values derived 

from descriptions of connected channel floor 

sandstones and point bar outcrops of the Huesca fluvial 

(Donselaar and Overeem, 2008). Figure 3 shows the 

permeability field of each layer in one of the models. 

 

Figure 3: Permeability field of each layer in 3D model.  

4. RESULTS AND DISCUSSION 

A variety of optimization experiments have been 

performed using the different models to study the 

impact of different choices within the optimization 

framework. Optimization of well location and thereby 

well spacing is the focus of the optimization 

experiments in this study.  

4.1. 2D Homogenous Case 

The optimization workflow is set up for the 2D 

homogenous system, with an initial well spacing of 500 

m. The standard deviation for control perturbation for 

gradient evaluations (perturbation size) is 0.03 with the 

number of perturbations being chosen to be 20 in this 

experiment. Figure 4(a) shows the production 

temperature during 100 years of production before and 

after optimization. Figure 4(b) is the objective function 

values (NPV) during 100 years of heat production, 

before and after optimization. 

 

Figure 4: (a) Production temperature during 100 years of 

production before and after optimization. (b) Objective 

function value during 100 years of heat production 

before and after optimization. 

Figure 4(a) reveals the heat breakthrough is delayed 

from year 2 to year 40 in the optimal strategy. This 

results in higher net energy production and 

subsequently objective function value increased from -

1.5 M euro to 0.52 M euro. Figure 5(a) and 5(b) show 

temperature map after 100 years of heat production 

with initial and optimized well locations, respectively. 

Blue and red dots represent the injector and the 

producer, respectively. After optimization the wells are 

located diagonally with a spacing of 1029 m. It is 

important to note that the wells are located in the center 

of grid blocks such that the exact distance of 1029 m 

cannot be achieved if the wells are located within the 

same row or column in the model. This explains why 

the wells are located diagonally in the optimal strategy. 

 

Figure 5: (a) Initial, (b) optimized temperature map after 100 

years of production. . Blue and red dots represent the 

injector and the producer, respectively. 

The stochastic nature of the optimization process 

implies the evaluation of a range of different well 

location configurations during the optimization 

iterations. Thus, many well spacing distances were 

evaluated which can be analyzed in the context of 

sensitivity analysis.  Hence the sensitivity of the 

objective function to the well spacing can be observed 

in Figure 6(a). Figure 6(b) magnifies the positive part 

of Figure 6(a).  
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Figure 6: (a) NPV as a function of well spacing for a 2D 

homogenous system and (b) beneficial (positive) NPV as 

a function of well spacing for a 2D homogenous system. 

The red strip indicates the optimum region of the well 

spacing.  

It can be seen from Figure 6 that the variations of the 

objective function value as a function of well spacing is 

not monotonic. The objective function value is initially 

increased as the well spacing increases up to an 

optimum well spacing above which the objective 

function value starts to decrease with further increases 

of the well spacing. Therefore, it can be concluded that 

there is a room for optimizing the well spacing in 

geothermal heat production systems, even for a simple 

2D homogenous case with a single doublet.  

4.2. 2D Heterogenous Case 

The initial location of the injector well (blue dot) and 

producer wells (red dot) is illustrated in Figure 7(a). 

The injector was initially placed in the shale and the 

producer was in the adjacent channel. Figure 7(b) is the 

simulated temperature map after 100 years of 

production.  

 

Figure 7: (a) Initial location of the injection (blue dot) and the 

production wells (red dot) on the permeability map. (b) 

Simulated temperature map after 100 years of 

production. 

Figure 8 shows the well locations and the simulated 

temperature at year 100 after the optimization process.  

 

Figure 8: (a) Well locations and (b) simulated temperature at 

year 100 after optimization. 

After the optimization process, both injection and 

production wells have been moved to the high 

permeable channels. It is important to note that the 

wells are in two different channels. Thus, the heat 

breakthrough is delayed quite significantly, while the 

injector provides the pressure supports to the producer 

through interconnected channels. This optimal strategy 

is non-trivial which highlights the importance of the 

optimization framework.  

After the optimization the heat breakthrough is delayed 

since the wells are in two separate channels. On the 

other hand, the pressure drop is reduced significantly 

since the wells are still connected through the network 

of high-permeability channels. Consequently, higher 

production temperature and lower pressure drop 

increase the energy production and reduce the 

consumed energy. Figure 9(a) and 9(b) show the 

produced and consumed energy respectively, before 

and after the optimization process.  

 

Figure 9: (a) Produced energy and (b) consumed energy by the 

pumps before and after the optimization process. 

Finally, Figure 10 shows the objective function 

evolution during 100 years of heat production before 

and after the optimization process. The NPV is 

increased from -14 million euro to 2.4 million euro after 

the optimization process.  

 

Figure 10: NPV during 100 years of heat production before and 

after optimization. 

The same as the previous case, the optimization process 

involves large number of simulations with different sets 

of control combinations in the parameter space, which 

can be utilized to get more insights into the correlations 



Kahrobaei et al.  

 6 

between the objective function and the control variables 

(well location). 

Figure 11 shows the final NPV after 100 years of 

production as a function of well spacing extracted from 

the optimization workflow like the previous case. 

Figure 11 includes only the simulations, which have a 

positive NPV. Well spacing represents different 

combinations of injection and production locations. 

However, it is important to note that the well spacing is 

not a very good representative for well locations in a 

heterogenous system. In a heterogenous aquifer, well 

intersections with either sand bodies (high permeability 

medium) or shale (low permeability medium) is more 

influential than well spacing.  

In contrast with a homogenous case, the points in 

Figure 11 are scattered all over the space. This is 

because the wells might have equal spacing but located 

in a high permeability channel or in low permeable 

shale. However, this indicates the importance of well 

placement optimization. The red dot in Figure 11 

indicates the well spacing and its corresponded NPV 

after optimization process.  

 

Figure 11: Beneficial (positive) NPV as a function of well spacing 

for a 2D heterogenous system. The red dot indicates the 

point, which is found in the optimization process.  

4.3. 3D Regional Case  

To investigate the potential value of regional scale 

geothermal field development within an optimization 

context a channelized 3D model, described in Section 

3.3, has been employed. In this experiment, a multi-

well system has been considered for efficient energy 

extraction from a much larger development area. Based 

on engineering judgement and accounting for the 

reservoir complexities a line drive production strategy 

with six wells was chosen as the initial development 

strategy (i.e., three doublet pairs). The well spacing 

between all doublets is chosen to be 2300 m initially. 

Since the model contains twenty layers it is almost 

impossible to find a vertical well trajectory, which will 

simultaneously intersect the high permeable channels 

in all layers. Figure 12 is an illustration of this initial 

development strategy with well locations shown in six 

out of the twenty layers of the models. The figure also 

illustrates the corresponding simulated temperature 

after 100 years of production.   

 

Figure 12: Initial well strategy and the corresponding simulated 

temperature after 100 years of production in first and 

last three layers of 3D model. 

As can be seen in Figure 12, the well connectivity, 

especially in the last three layers, is poor as the 

production wells are located in areas with relatively 

poor reservoir quality which leads to low 

injection/production rates considering the maximum 

allowable injection pressure. This, albeit outside the 

scope of this paper, also points to the importance of 

well trajectory optimization to find deviated or 

horizontal well paths to intersect the best reservoir 

sections in all layers. Figure 13 depicts the well 

locations and the corresponding temperature map in 

first and last three layers after the optimization process.  

 

Figure 13: Optimized well strategy and the corresponding 

simulated temperature after 100 years of production in 

first and last three-layers of 3D model. 

Although the well spacings were reduced after the 

optimization, the well connectivity improved 

significantly through the network of high-permeability 

channels. This results in achieving injection/production 

target rates. Subsequently, the energy production is 

increased because of an increase in the production rates. 

Figure 14(a) and 14(b) show the injection and 

production rates before and after the optimization 

process. The injection/production rates in all wells 

reached the target rates after the optimization process.  
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Figure 14: Injection and production rates before and after the 

optimization process.  

Finally, Figure 15 shows the objective function value 

during 100 years of heat production before and after the 

optimization process. The NPV is increased from -7 

million euro to 5.3 million euro after the optimization 

process. Though this result might seem counter-

intuitive from a well spacing perspective it highlights 

the value of model-based optimization workflows to 

find non-trivial solutions which are optimal on a 

regional scale considering the subsurface complexities.  

 

Figure 15: NPV during 100 years of heat production before and 

after optimization. 

4.4. Optimization under Uncertainty 

10 different homogenous permeability realizations 

have been used to capture the effect of geological 

uncertainty in well location optimization for 

geothermal heat production systems. The permeability 

of the realizations varied between 150 mD and 240 mD.  

Initial optimization results showed that despite 

significant variations in the well locations, the objective 

function values remained negative for the realizations 

with permeability values below 200 mD. A detailed 

analysis of these results led to a sensitivity analysis for 

a model with a permeability of 150 mD. Figure 16 

depicts the final NPV after 100 years of heat production 

from an aquifer with a permeability of 150 mD for a 

wide range of well spacings.  

 

Figure 16: NPV as a function of well spacing for a 2D 

homogenous system with a permeability of 150 mD. 

Figure 16 reveals that there exists no doublet location, 

which results in a positive NPV for this model with a 

permeability of 150 mD. In other words, because of its 

low permeability, if the wells become farther from each 

other, there is no sufficient pressure support to 

positively impact the economic objective function used 

in this paper. On the other hand, reducing the well 

spacing results in a very early heat breakthrough which 

reduces the amount of energy produced which again 

has a negative impact on the objective function. These 

two phenomena lead to there being no well spacing or 

location combination possible which would achieve a 

positive value of the objective function.  

We observed that for a permeability of 200 mD or 

higher we were able to find optimal strategies which led 

to an expected positive objective function value. 

Therefore, for the robust optimization experiment an 

ensemble of 10 model realizations with permeabilities 

ranging between 200 and 290 mD were chosen to be 

optimized.  

Figure 17(a) and 17 (b) illustrate the evolution of the 

expected objective function value for the ensemble of 

model realizations for the initial and optimal strategy, 

respectively. The bold black solid line in both plots 

represents the expected objective function over the 

ensemble. The expected objective function with the 

initial well locations is -0.60338 million euros, which 

increased to 1.51 million euros after the optimization 

process. The optimal well locations were located at a 

well spacing of 1096 m compared to the initial strategy 

which had a spacing of 500m. The increase in the 

distance between the wells leads to a delay in the heat 

breakthrough for all the model realizations. 
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Figure 17: (a) NPV of 10 different model realizations before the 

optimization. The black solid line indicates the average 

NPV of the entire ensemble. (b) NPV of 10 different 

model realizations after the optimization. The black 

solid line indicates the average NPV of the entire 

ensemble.    

These results are also in line with the results for the 

deterministic optimization explained the sections 

above. The optimal well locations achieved show only 

a difference of one grid block between the deterministic 

and robust experiments. This also highlights the value 

of incorporating uncertainty within an optimization 

workflow.   

4. CONCLUSIONS 

In this study we have shown the value of using 

numerical optimization techniques for well location 

optimization for a geothermal heat production system. 

The results show that non-trivial optimal solutions were 

obtained for three different cases with increasing model 

and development option scenarios. The importance of 

geological parameters and non-doublet systems were 

also highlighted by the results obtained in this study. 

The experiments were conducted with and without 

uncertainty in the model parameters. A semi-regional 

geological model was also constructed which is 

representative of the West Netherlands basin for a set 

of experiments on models which are more 

representative of real field cases. The results of these 

different types of experiments had common features 

which highlight the practical value of the optimization 

results.  
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