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ABSTRACT 
To locate and characterize faults is an important step 
towards understanding geothermal systems. 

Our novel approach, presented here, uses bathymetry 
and geochemical profiles to map hidden geothermal 
structures in a volcanic lake. The lake in the 
Lahendong geothermal field has light to dark greenish 
acidic water (pH3) and a size of 800x600 m. Previous 
studies show, that the lake masks geothermal features 
e.g. faults and fumaroles.  

Our study resulted in a 3D bathymetry showing a total 
depth of 0.5 to 35 m. In general, the northern and 
eastern part of the lake is shallower with 8-10 m at 
maximum. The southern and western part is much 
steeper and shows hole structures with depths of 22-
35 m. Holes at the lake bottom can be clearly related 
to faults and their intersection points. Additionally, 
geochemical profiles in the lake indicate inflow zones 
of saline, hot acidic water into the lake at certain 
locations. 

Combining bathymetry and geochemistry we were 
able to create a detailed fault map of the area. 

1. INTRODUCTION  

Faults, fractures and geothermal features, i.e. hot 
springs or fumaroles, give key information on the 
subsurface. To locate and characterize these structures 
is an important step towards understanding and 
commercially using the subsurface, e.g. for 
geothermal energy. However, these structures can be 
hidden by erosion, soil, vegetation, lakes, rivers or 
calderas and are then difficult to spot and map. 
Therefore, there is a strong need to develop tools to 
identify and map hidden structures. 

Until now, faults have been explored using a 
combination of geophysical measurements 
(Harinarayana et al., 2006; Garg et al., 2007) and 
structural geological mapping (Faulds et al., 2010). If 
faults are not visible in the field, hot springs, gas 

emanations and their alignments give hints for their 
locations (Lynne, 2013, Aubert and Baubron, 1988; 
Voltattorni et al., 2010). However, these approaches 
are limited to structures which are evident at the 
surface. Bathymetry has mainly been used to estimate 
volume changes of volcanic lakes combined with 
detection of volcanic activities and risk monitoring 
(Hurst and Dibble, 1981; Bailey, 1989; Bernard et al., 
2004; Takano et al., 2004; Coolbaugh et al., 2007; 
Anzidei et al., 2008; de Ronde et al., 2015). 

Our approach, presented here, uses bathymetry and 
geochemical profiles to identify and characterize 
geothermal structures hidden by a lake above a 
geothermal reservoir. 

2. STUDY AREA AND STRUCTURAL-
GEOLOGICAL SETTING 
Our first test site is the caldera lake Linau in the 
Lahendong geothermal field in North-Sulawesi, 
Indonesia. Neumann van Padang (1951) states an 
average depth of 10-12 m for the lake. Previous 
studies show, that the lake masks faults and fumaroles 
(Brehme et al., 2016; internal communication). In 
general, the area is characterized by a complicated 
structural-geological setting with different phases of 
faulting and fracturing (Brehme et al., 2014; Brehme 
et al., 2016). The strongly compartmentalized 
geothermal system currently produces 80 MWe from 
ten production wells at 1500-1800 m depth. 



Brehme et al. 

 2 

 
Figure 1: Bathymetry depth map of Lake Linau 

and geochemical measurement locations 

3. METHODS 
A Lowrance Elite TI 7 from Navico installed on a raft 
measured the bathymetry driving in circles with 
decreasing diameter on the lake. 

Conductivity, density, temperature and pressure 
profiles have been logged using the CastAway-CTD 
logger from SonTek. 

4. RESULTS 
The main result of the survey is the detection of 22-35 
m deep holes at the lake bottom. They are aligned at 
the western shore along a NE-SW trending line. The 
holes have a diameter of 20-40 m at the top and 4 m at 
the bottom. Other parts are 14 m deep in the west and 
12 m deep in the south of the lake. In general, the 
northern and eastern part of the lake is shallower with 
8-10 m at maximum (Fig.1 and Fig.2). 

 

Figure 2: 3D bathymetry of Lake Linau, view from 
NE towards lake surface 

Geochemical measurements were taken along a 
systematic grid with 100 m distance between the 
measurement points (Fig.1). Here, we present 
measurements from the deep holes in the west (G01) 
and northwest (C11), an average profile in the middle 
of the lake (E3) and a measurement in the eastern 
shallow area (E5) (Fig.3). 

All profiles show a strong decrease in temperature in 5 
m depth and a moderate decrease in 15 m depth 
(Fig.3). The temperature pattern increases below 15 m 
but gets unstable. Temperature peaks in the deep hole 
G01 show inflow zones of warmer water. 

Electrical conductivity generally decreases to a 
minimum above 5 m depth. Between 5 and 15 m it 
slightly increases or is stable. Below 15 m, 
conductivity is much more unstable but shows parallel 
peaks to the temperature pattern. Hence, the warm 
inflowing water is highly saline. 

pH has been measured at points over depth. The most 
neutral pH (5.6) is in the east at E5. In the lake middle 
and at C11 pH is increasing over depth. This 
behaviour is related to an inflow from hot springs into 
the lake at shallow depth. The decrease in pH in the 
deep hole G01, shows that the warm, saline water 
inflows at depth are acidic. 

 

Figure 3: Normalized geochemical depth profiles 
from selected locations in Lake Linau 

5. OUTLOOK 
Combining bathymetry and geochemical 
measurements is a successful approach to characterize 
hidden structures beneath lakes. Bathymetry 
uncovered deep hole structures, which can be clearly 
related to faults. Faults in the lake area were newly 
discovered or confirmed. The 3D view shows that 
faults exactly intersect where the bathymetry shows 
deep depressions in the lake or where manifestations 
occur onshore (Fig.5 right and Fig.6): 

A previously known strike-slip fault (SS1) intersects 
the lake in the west and cuts the deep hole (C11). The 
other deep hole (G01) is at the crosspoint of a normal 
fault (N2) striking N-S intersects and a newly 
discovered fault (F1) striking NW-SE. 
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Figure 5: 3D bathymetry with fault locations, types 
and intersection points 

Additionally to mapping of faults, its role in 
conducting fluids is important to understand. Deep 
inflow of hot saline water at fault intersections were 
confirmed by the location of hot springs (M10, M15, 
M16). Furthermore, geothermal well data show the 
highest productivities (LHD 23, LHD28) at fault 
intersections. Another highly productive area, not 
targeted yet, is expected near to the deep hole G01. 

Bathymetric data linked with geochemical 
measurements is a successful mapping tool for hidden 
structures in a lake. The approach allows to develop a 
conceptual geological 3D model of the subsurface. 
This technique is not limited to geothermal reservoir 
characterization but has a wide applicability for 
subsurface utilization, e.g. conventional reservoirs, 
structural geological mapping or subsurface waste 
storage. 
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